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1. Talks

1.1. Talk 1: Hall Algebras. (10.10.19; Busse, Hanna) The goal of this talk is
to introduce the natural habitat and definition of Hall algebras, following [Sch06,
Section 1.1-1.3]

• Define a finitary abelian category. Recall the Grothendieck group of an
abelian category, explain the Grothendieck group in finite length categories
(basis of simples). Recall global dimension. [Sch06, Section 1.1]
• Give examples of such categories, explain which properties they have. Those

examples will come back in later talks, and will be properly introduced
there. So just roughly explain.

– Quiver representations. Explain how the standard resolution of the
simples shows that this category has global dimension 1.

– Nilpotent representation of the Jordan quiver.
– Coherent sheaves on P1.

• Define the Euler form. Explain that it descends to the Grothendieck group.
[Sch06, Section 1.2]
• Explain the definition of the Hall algebra, [Sch06, Start of Section 1.3]. Do

not give the function definition.
• Prove that the Hall algebra is associative. [Sch06, Proposition 1.1]
• Explain how the Hall algebra is graded by the Grothendieck group. [Sch06,

Remark 1.3]

As a running example, compute everything explicitly for HVectFq
, the Hall algebra

of the category of finite dimensional vector spaces over a finite field, see [Sch06,
Example 3.14].

1.2. Talk 2: Green’s Coproduct. (17.10.19; De Vries, Sjoerd) In this talk, we
want to understand how one can (attempt) to upgrade the Hall algebra to a bial-
gebra, following [Sch06, Sections 1.4, 1.5].

• Define the completed tensor product HA⊗̂HA. [Sch06, Section 1.4]
• Define the coproduct. Show that the coproduct is coassociative. [Sch06,

Proposition 1.4]
• Compute products and coproducts in the examples HVectFq

, and HRepFq (A2).

• Mention all the points in [Sch06, Remark 1.6], give an example for the
failure of (co)commutativity.

• Prove [Sch06, Lemma 1.7].
• Explain the twisted multiplication. [Sch06, Section 1.5]
• Prove [Sch06, Lemma 1.8].
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• State but do not prove Green’s theorem. Explain where the assumption of
global dimension ≤ 1 is used. [Sch06, Theorem 1.9]
• Explain why the twisted multiplication is necessary using the example

HVectFq
.

• Define the extended Hall algebra and state [Sch06, Corollary 1.10].

1.3. Talk 3: U̇q(sl2). (24.10.19; Lorke, Berthold) In this talk we want to under-
stand how one could get from sl2 to the definition of the quantum group Uv(sl2)
and then study some properties and structures of Uv(sl2).

• Recall generators and relations of sl2 and U(sl2). [Lau11, Start of Section
1.2]
• Recall the finite dimensional representations of sl2. Draw the usual pic-

tures of the irreducible representations, using the basis F k/k!v for a highest
weight vector v, annotate the arrows with the coefficients with respect to
this basis.
• Define U̇(sl2) as in the end of [Lau11, Section 1.2], but for U̇(sl2) instead

of U̇q(sl2).
• Define the quantum integers, factorials.
• Change the integers from the pictures to quantum integers.
• Observe how the relation EF − FE changes.
• Define U̇q(sl2). [Lau11, End of Section 1.2]
• Define Uv(sl2). [Lau11, Middle of Section 1.2]
• Prove that one can turn Uv(sl2) into a Hopf algebra. [Jan96, Lemma 3.1,

3.4, 3.6, 3.7 and 3.8]
• Show that Uv(sl2) is neither commutative nor cocommutative. Compare

this to the U(sl2), which is cocommutative.
• Explain quickly that we can now take tensor products of representations of

Uv(sl2).
• Let V be the fundamental (two-dimensional) representation of Uv(sl2).

Show that the map swapping the factors in V ⊗ V does not commute with
the action of Uv(sl2). Explain how the swap map has to be modified in this
example. Write down explicit matrices. [Jan96, 3.14, 3.15] Connect this
with the non-cocommutativity.

1.4. Talk 4: A Geometric Constructions of Representations of Uv(sl2)
and Definition of Uv(g). (31.10.19; Liao, Wang) This talk has two goals. First,
we want to understand a geometric construction of finite dimensional irreducible
representations of Uv(sl2). Then, we want to see the general definition of Uv(g) and
attempt to understand some of its relations.

• Define the varieties M(w, d),M(d),M(w,w+ 1, d) and the correspondence
M(w, d)←M(w,w + 1, d)→M(w, d+ 1).[Sav03, Section 1.3]

• Explain how a correspondence induces a linear map between the function
spaces.[Sav03, Section 1.3]

• Define the action of Uv(sl2) on the function spaces.
• Prove that the action is well-defined and the resulting representations co-

incides with irreducibles from last lecture. [Sav03, Proposition 1.3.1]
• Introduce the tensor product variety T (d). Focus on the case of tensor

products of two irreducibles. Explain how Uv(sl2) acts. Do not prove
[Sav03, Theorem 2.1]. [Sav03, Section 2.1, 2.2]



SEMINAR: HALL ALGEBRAS AND QUANTUM GROUPS WS2019 3

• Now we define Uv(g) for a semisimple Lie algebra g as in [Jan96, Chapter
4]

– Quickly mention that a semisimple Lie algebra comes with a root sys-
tem, Cartan matrix, etc., [Jan96, 4.1] and that one can write down
generators and relations for g using this data [Jan96, Introduction
Chapter 4]. Make everything as explicit as possible in the example
A2 = sl3.

– Define Uv(g) by first giving the ”sl2” relations (R1)-(R4) and then the
Serre relations (R5) and (R6). [Jan96, 4.3] Again, explain the relations
for A2 = sl3.

– Define Uv(n
+) and Uv(b) (Jantzen calls Uv(n

+) = Uv(g
+)). [Jan96,

4.4].

1.5. Talk 5: Quiver Representations. (7.11.19; Seifner, Patrick) A big class of
examples of interesting Hall algebras comes from categories of representations of
quivers over a finite field. In this talk we collect facts about quiver representations
and witness the first signs of the Ringel–Green Theorem.

• Define what a quiver and a quiver representation really is. [Sch06, Intro-
duction Section 3.1]

• State important properties of Repnilk (Q): abelian, Krull–Schmidt, classi-
fication of simples, dimension vector/description of Grothendieck group,
computation of Euler form. [Sch06, Introduction Section 3.1, Proposition
3.1, Corollary 3.2, Proposition 3.3]

• Explain [Sch06, Corollary 3.1]. No need to use the word Kac–Moody.
• Without proof, how the quivers of finite type look like (ADE), [Sch06,

Appendix A.1]. State Gabriel’s Theorem, see [Sch06, Theorem 3.7]. Em-
phasize that everything is independent of the field.

• Go through [Sch06, Example 3.8] with great care and detail. Make every-
thing explicit for n = 2.

• Do [Sch06, Example 3.9].
• Observe that the graded dimensions of gr U(n+) and the Hall algebra coin-

cide by Gabriel’s Theorem. This is a first hint towards the Ringel–Green
Theorem.

• Do the computation in [Sch06, Point 2 and 3, Example 3.15]. Send a cold
shiver down our spines when we encounter the Serre relations for A2 = sl3.
Emphasize that all relations are polynomial in q.

• State the Ringel–Green Theorem [Sch06, Theorem 3.16] in the ADE case.

1.6. Talk 6: Ringel–Green Theorem. (14.11.19; Kornemann, Malte und Woj-
ciechowski, Zbigniew) In this talk we want to prove three quarter (the well-definedness
and injectivity part) of the Ringel–Green Theorem:

Ψν : Uν(n+Q) ↪→ HQ.

We consider more general the case an arbitrary Quiver without loops (not only
ADE as in the last talk).

• Define Uν(bQ) and Uν(n+Q) associated to a quiver without loops by gener-

ators and relations. [Sch06, Above Theorem 3.16]. Explain that these are

specializations at ν = q
1
2 of Uv(bQ) and Uv(n

+
Q), and q is the cardinality of
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our finite field. Remark that the definition coincides with the Lie algebra
definition if Q is an Dynkin quiver.
• Again, state the Ringel–Green Theorem. [Sch06, Above Theorem 3.16]
• We prove that the map is well-defined and injective:

– Show that Hall algebra fulfills the necessary relations. Explain that in
the case |ai,j | ≤ 1 this is just the calculation from the last talk, see
[Sch06, Point 2 and 3, Example 3.15]. Prove the general case as in
[Sch06, Proof of Theorem 3.16]. This gives us a well-defined map.

– Show injectivity by using Green’s Scalar product. State [Sch06, Propo-
sition 1.12, Corollary 1.13]. Use Green’s Scalar product to show injec-
tivity as in [Sch06, Proof of Theorem 3.16].

• Remark that we can prove surjectivity if we now that the graded dimensions
agree. Recall how Ringel’s theorem gives us the graded dimension of of HQ.
Compare this to the formula graded dimension of Uν(n+Q), which we will

prove in the next talk by providing a PBW style theorem. [Sch06, Proof of
Theorem 3.16]
• Explain that the statement can be upgraded to Uν(bQ) and the extended

Hall algebra.
• Now we want to see that the structure constants of the HQ for quivers

of finite type are polynomials in q, and that one can define a generic Hall
algebra with those polynomials as structure constants, (then HQ is obtained
by specialization, in same way as Uν(n+Q)). For this, state and not prove

[Sch06, Proposition 3.18] and do [Sch06, Example 3.20, 3.21].
• For quivers which are not of finite type, the surjectivity of Ψν fails. We

want to see this in the example of the Kronecker quiver Q = •⇒ •.
– Remark that the PBW theorem holds here as well and would give us

dim Uv(n+)(1,1) = 2.
– Classify the representations of Q over Fq with dimension vector (1, 1)

and conclude that dim(HQ)(1,1) = 2 + q.
– Conclude that Ψν is not surjective.

1.7. Talk 7: PBW Bases and Uq(g). (21.11.19; Bonfert, Lukas)
The goal of this talk is to prove an analogue of the Poincaré–Birkhoff–Witt

theorem for Uq(g), thereby completing the proof of the Ringel–Green theorem.

• Recall the Weyl group W and braid group B associated to a finite type
root system R. Recall the length function l : W → Z≥0.
• State, without proofs, the results about braid group actions in the classical

(non-quantized) case. The main result is [DDPW11, Theorem 5.26]. A
general overview is contained in [DDPW11, Sections 5.4-5].
• Define a group homomorphism T : B → Aut(Uv(g)) [Lus90, §1.3]. (Note:

Lusztig’s UA′ is our Uv(g) while his U is the integral form of Uv(g).)
• Prove [Lus90, Proposition 1.7].
• Construct a putative basis of Uv(g) using the braid group action. Prove

that it is indeed a linearly independent subset [Lus90, Proposition 1.10].
The proof relies on a [Lus88, Theorem 4.12]; state this result, as it applies
to the present setting, but do not prove it.
• Exhibit a triangular decomposition of Uv(g); see [Ros88, Proposition 2].
• Prove the PBW theorem [Lus90, Proposition 1.13].
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• Recall how the PBW and Krull–Schmidt theorems imply that, in finite
type, HRepFq (Q) and U√q(n

+
Q) have the same graded dimension. Conclude

the Ringel–Green theorem.

1.8. Talk 8: Drinfeld Double. (28.11.19; Spellmann, Jan) In this talk we discuss
the Drinfeld double associated to a Hopf algebra and prove that the Drinfeld center
of the category of representations of a Hopf algebra coincides with the category of
representations of its Drinfeld double. We use this to construct all of Uv(g) using
Hall algebras.

• Collect a list of all the ingredients that make a Hopf algebra. For example:
[Kas95, Chapter III]
• Define the Drinfeld double (also called quantum double) of a Hopf algebra.

[Kas95, Definition IX.4.1]
• Sketch a proof why the Drinfeld double is a Hopf algebra. [Kas95, Chapter

IX]
• Explain what a tensor category is. [Kas95, Definition XI.2.1]
• Explain what a braided tensor category is. [Kas95, XIII.1.1 Definitions and

main properties]
• Define the Drinfeld center of a tensor category. [Xia97, 2.2, 2.3]
• Show that the center is a braided monoidal category. [Kas95, Theorem

XIII.4.2.]
• Show [Kas95, Theorem XIII.5.1]!
• Now explain how we can construct Uq(g) as a Drinfeld double (modulo

some simple relations) of a Hall algebra. [Sch06, Section 5.2]

1.9. Talk 9: “Fun” with F1. (5.12.19; Wehrhan, Till) So far, we have constructed
Uv(g). What about U(g)? In this talk we will construct U(g) using Hall algebras of
”quiver representations over F1”.

• Explain that while there is no field F1, there is often an agreement what
certain objects associated to fields ”should be” over F1. [Szc10, Introduc-
tion]
• How formulas which describe number of subspaces become formulas for

subsets in the limit q → 1. [Szc10, Introduction]
• Define the category Vect(F1) of pointed sets with partial bijections as mor-

phisms. Explain that one can think about the pointed element in the set as
the zero vector and the other elements as basis vectors. Partial bijections
can be thought of as linear maps which are adapted to the bases of domain
and codomain. [Szc10, Definition 2.1]
• Explain the important properties of Vect(F1) you will need later. [Szc10,

List after Definition 2.1]
• Explain the Jordan normal form for Vect(F1). [Szc10, Section 3]
• Quickly define quiver representations over Vect(F1). Explain how we can

define exact sequences in RepF1
(Q). [Szc10, Section 4]

• Mention without proof and all the details that RepF1
(Q) fulfills the Jordan–

Hoelder and Krull–Schmidt theorem.
• Describe the Grothendieck group in terms of dimension vectors. [Szc10,

Section 4]
• Quickly define the Hall algebra with its multiplication, comultiplication

(this is not the Hall coproduct), and state that H(Q) = U(nQ), where
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nQ = P(H(Q)) denotes the Lie algebra primitive elements in the Hopf
algebra H(Q). Explain how this is implied by the Milnor–Moore Theorem.
[Szc10, Section 6]
• Extend this to define the extended Hall algebra [Szc10, Section 6.1]
• State and prove [Szc10, Theorem 6]. If you need to, say if this has not been

done in the talks before, explain how we can associate a Lie algebra to Q
before this.
• Explain that ρ : U(b) → H̃(Q) is determined by a map of Lie algebras,

[Szc10, Remark 3]. Mention [Szc10, Example 8.1]
• Prove that ρ is an isomorphism in type A. [Szc10, Section 10]

1.10. Talk 10: Jordan Quiver I. (12.12.19; Stelnzer, Jendrik) In this talk we
allow loops in our quiver for the first time. In fact, just one loop. We want to
understand the Hall algebra associated to representations of the Jordan quiver 	 .

• Explain that representations of the Jordan quiver are nothing other than
vector spaces with an endomorphism. [Sch06, Section 2.1]

• Explain how the Jordan normal form tells us everything about Repnilk (Q).
[Sch06, Theorem 2.1]
• Explain that the Hall algebra has a basis given by partitions. [Sch06, After

Theorem 2.1]
• Compute some structure constants as in [Sch06, Example 2.2 and 2.3].
• Do the same over F1. [Szc10, Section 9]
• Define the ring of symmetric functions Λ. [Mac98, Chapter 1, Section 1]
• Explain the various bases: monomial, elementary, complete symmetric

functions, power sums, [Mac98, Chapter 1, Sections 2-5]. Emphasize that
they are also indexed by partitions.
• Prove that the HF1

∼= Λ. [Mac98, Section 9]

1.11. Talk 11: Jordan Quiver II. (19.12.19; Antor, Jonas) We continue our
study of the Jordan quiver. This time over Fq, which makes it significantly more
interesting. We compute more structure constants and show that they are polyno-
mial in q.

• Do [Sch06, Example 2.4]. A more involved computation of structure con-
stants.
• Prove [Sch06, Theorem 2.6]
• Show the existence of Hall polynomials, and that they specialize to the

structure constants of the Hall algebra. [Sch06, Proposition 2.7]
• Define the generic Hall algebra. [Sch06, After Proposition 2.7]
• Compute Green’s Scalar product. [Sch06, Lemma 2.8]
• Show that the generic Hall algebra is isomorphic to the ring of symmetric

function Λ⊗ C[t, t−1].

1.12. Talk 12: Cyclic Quiver. (9.01.20; Akynbaev, Ulukbek) We study the Hall
algebra of the cyclic quiver Q. The goal is to understand how the Hall algebra can
be decomposed into a tensor product of its composition subalgebra and the ring of
symmetric functions

• Classify the representations. Draw pictures to illustrate the indecompos-
ables. [Sch06, Beginning of Section 3.5]
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• Define the composition algebra of a Hall algebra, as the algebra generated by
simples. Explain that it is the isomorphic image of the map Ψ : Uν(n+Q)→
H(Q).
• Explain and prove [Hub09, Theorem 17].

1.13. Talk 13: Uv(ŝln). (16.01.20; Pfeifer, Calvin) In this talk we want to under-

stand the affine Lie algebra ŝln, its q-version Uv(ŝln) and their relation to the Hall
algebra of the cyclic quiver.

• Define the loop algebra and affine Lie algebra associated to an affine Dynkin
diagram. [Sch06, Example A.15]

• Draw the root system of ŝl2. [Sch06, Example A.15]

• Introduce Uv(ŝln) [Sch06, Appendix A.4]
• Provide the Drinfeld–Jimbo and Drinfeld’s new presentation. [Hub19, Sec-

tion 2.1, 2.2]

• By referring to the last talk, note that U≥0v (ŝln) is isomorphic to the com-
position algebra of the cyclic Quiver.[Hub19, Theorem 5]

• Provide the different presentations of Uv(ĝln). [Hub19, Section 2.1, 2.2]

• State the result that U≥0v (ĝln) gives all us all of the Hall algebra. Sketch
the proof. [Hub19, Main Theorem]

1.14. Talk 14: Coh(P1) I. (23.01.20; Zhang, Mingjia? and Puhlmann, Luise?) In
this talk we want to understand the category Coh(P1) in great detail. We want to
classify the indecomposable objects and their extensions.

• Recall the standard affine chart of P1 with the coordinate rings and tran-
sition function. [BK01, Section 2.1]
• Define the category Coh(P1) in elementary terms. [BK01, Section 2.1]
• Define the sheaves O(n) and compute the Hom spaces between them.
• Define skyscraper sheaves and their locally free resolution.
• Prove [BK01, Proposition 3].
• Compute the Hom and Ext groups between all indecomposables.
• Conclude that Coh(P1) (over a finite field) satisfies the properties needed to

define the Hall algebra, and that the subcategory of torsion sheaves induces
a subalgebra.

1.15. Talk 15: Coh(P1) II. (30.01.20; Robin, Louis) In this talk we want to study

the Hall algebra of Coh(P1) study its connection with Uv(ŝl2)

• Compute some Hall numbers. [BK01, Theorem 13]
• Explain the structure of the torsion part of the Hall algebra. [BK01, Propo-

sition 15]
• Explain the tensor decomposition. [BK01, Proposition 20]
• Prove [BK01, Theorem 26]
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