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• This exam has 4 questions, for a total of 18 points.

• Please print your working and answers neatly.

• Write your solutions in the space provided showing working.

• Indicate your final answer clearly.

• You may write on the reverse of a page or on the blank pages found at the back of the booklet however
these will not be graded unless very clearly indicated.

• Non programmable and non graphing calculators are allowed.
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1. (a) (2 points) Compute the derivative of the following functions.

1. f(x) = sin
(

3
√

cos(x+ 1)− x3
)

2. f(x) = tan
(

5x2+11
cos(x)

)
(b) (2 points) Determine dy

dx for points on the curve:

sin(xy) + cos(xy) = 1

Solution:

(a) 1. Let u(x) = 3
√

cos(x+ 1)− x3. Using the chain rule we get

u′(x) = −1/3 cos(x+ 1)−2/3 sin(x+ 1)− 3x2.

Using the chain rule again, we obtain

f ′(x) = cos(u(x))u′(x)

= cos
(

3
√

cos(x+ 1)− x3
)(
−1/3 cos(x+ 1)−2/3 sin(x+ 1)− 3x2

)
2. Let u(x) = 5x2+11

cos(x) . Using the quotient rule we get

u′(x) =
10x cos(x) + (5x2 + 11) sin(x)

cos2(x)
.

Using the chain rule, we obtain

f ′(x) = sec2(u(x))u′(x)

= sec2
(

5x2 + 11

cos(x)

)
10x cos(x) + (5x2 + 11) sin(x)

cos2(x)

(b) We apply d
dx to the equation and solve for dy

dx .

d

dx
(sin(xy) + cos(xy)) =

d1

dx

cos(xy)(x
dy

dx
+ y)− sin(xy)(x

dy

dx
+ y) = 0

(cos(xy)− sin(xy))(x
dy

dx
+ y) = 0

x
dy

dx
+ y = 0

dy

dx
=
−y
x
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2. A bird flies in a straight line with a speed of 4m/s at a constant height of 30m. At the moment t = 0
the bird is directly over your head.

(a) (2 points) How fast is the distance between you and the bird changing at t = 10s?

(b) (2 points) You have a rifle and keep it pointed at the bird. Determine the rate of change of the
angle between your rifle and the ground at t = 0.

Solution:

(a) Denote the position of the bird on the straight line by x(t) (with x(0) = 0), its height by h and
its distance from you by d(t). Hence

x = 4t

h = 30

and by Pythagoras’s theorem we have

d(t) =
√
h2 + x2 =

√
302 + (4t)2

Hence

d′(t) =
32t

2
√

302 + (4t)2

and for t = 10s

d′(t) =
320

2
√

302 + 402
=

320

100
= 3.2m/s.

Hence the distance is changing by 3.2m/s at t = 10s.

(b) Denote said angle by θ(t). Then

x = h tan(π/2− θ)

Applying d
dt this yields

4 =
dx

dt
=

d

dt
h tan(π/2− θ) =

−h
cos2(π/2− θ)

dθ

dt

At t = 0 clearly θ = π/2 and hence

dθ

dt
= −4 cos2(π/2− θ)/h = −4/30

Hence θ changes by −4/30rad/s at t = 0.
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3. Consider the function

f(x) =
x4

4
− 2x2

(a) (2 points) Determine the signs of f ′ and f ′′.

(b) (1 point) Determine the local extrema and points of inflections of f .

(c) (1 point) Determine the asymptotic behavior of f .

(d) (2 points) Sketch the graph of f using the provided grid. Plot the transition points and connect
them with the arcs corresponding to the sign combination of f ′ and f ′′.

y

x
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Solution:

(a) We have

f ′(x) = x3 − 4x = x(x− 2)(x+ 2)

f ′′(x) = 3x2 − 4 = 3

(
x− 2√

3

)(
x+

2√
3

)
and

Interval Test value sign of f ′

(−∞,−2) f ′(−3) = −15 −
(−2, 0) f ′(−1) = 3 +
(0, 2) f ′(1) = −3 −
(2,∞) f ′(3) = 15 +

Interval Test value sign of f ′′

(−∞,−2/
√

3) f ′′(−2) = 8 +

(−2/
√

3, 2/
√

3) f ′′(0) = −4 −
(2/
√

3,∞) f ′′(2) = 8 +

(b) The function f has local minima f(−2) = f(2) = −4, a local maximum f(0) = 0 and inflection
points f(−2/

√
3) = f(2/

√
3) = −20/9.

(c) The function f has leading term 1/4x4 hence

lim
x→±∞

=∞.

(d) Putting everything together we can sketch the graph of f :

y

x

local min. local min.

local max.

point of
inflection

point of
inflection
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4. (4 points) Find two positive real numbers x and y such that x+ y = 3 and xy2 is as big as possible.

Solution: We use the equation x+ y = 3 to turn xy2 into a function of just one variable.

x+ y = 3 is equivalent to

y = 3− x.

We substitute this into xy2.

f(x) = xy2 = x(3− x)2 = x3 − 6x2 + 9x

Our goal is to minimize f(x) for x ∈ [0, 3]. For this we determine the critical points of f(x).

f ′(x) = 3x2 − 12x2 + 9 = 3(x2 − 4x+ 3) = 3(x− 1)(x− 3)

We hence have critical points at c = 1 and c = 3. To determine the maximum, we evaluate f at the
critical points and the end points of the interval [0, 3].

point value
0 f(0) = 0
1 f(1) = 4
3 f(3) = 0

Hence f(1) = 4 is the maximum value which is obtained at x = 1 and y = 2.
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