# A Formalism of Mixed Sheaves in Positive Characteristic

Albert-Ludwigs-Universität Freiburg

Jens Niklas Eberhardt

25. Januar 2017







#### Joint work with Shane Kelly.





To a complex variety  $X/\mathbb{C}$  one associates categories of:





To a complex variety  $X/\mathbb{C}$  one associates categories of:

#### **Constructible sheaves** on $X(\mathbb{C})$ ( $X(\mathbb{C})$ equipped with metric topology)

To a complex variety  $X/\mathbb{C}$  one associates categories of:







4/6

Mixed  $\ell$ -adic sheaves, mixed Hodge modules come with:



Mixed  $\ell\text{-adic}$  sheaves, mixed Hodge modules come with:

Grothendieck six functor formalism  $(f^*, f_*, f_!, f^!, \otimes, \mathscr{H}om)$ 



UNI FREIBURG

Mixed  $\ell\text{-adic}$  sheaves, mixed Hodge modules come with:

Grothendieck six functor formalism  $(f^*, f_*, f_!, f^!, \otimes, \mathscr{H}om)$ 

Deligne's Yoga of weights



Mixed  $\ell\text{-adic}$  sheaves, mixed Hodge modules come with:

- Grothendieck *six functor formalism* ( $f^*, f_*, f_!, f^!, \otimes, \mathscr{H}om$ )
- Deligne's Yoga of weights
- BBDG/Saito: *decomposition theorem* for perverse sheaves

BURG



....

Mixed  $\ell\text{-adic}$  sheaves, mixed Hodge modules come with:

- Grothendieck *six functor formalism* ( $f^*, f_*, f_!, f^!, \otimes, \mathscr{H}om$ )
- Deligne's Yoga of weights
- BBDG/Saito: *decomposition theorem* for perverse sheaves

BURG



....

Mixed *l*-adic sheaves, mixed Hodge modules come with:

- Grothendieck *six functor formalism*  $(f^*, f_*, f_!, f^!, \otimes, \mathscr{H}om)$
- Deligne's Yoga of weights
- BBDG/Saito: *decomposition theorem* for perverse sheaves

But only work with characteristic zero coefficients **D**<sup>R</sup>O



....

Mixed *l*-adic sheaves, mixed Hodge modules come with:

- Grothendieck *six functor formalism* ( $f^*, f_*, f_!, f^!, \otimes, \mathscr{H}om$ )
- Deligne's Yoga of weights
- BBDG/Saito: *decomposition theorem* for perverse sheaves

But only work with characteristic zero coefficients



ă









## Theorem (E.-K. 2016)

There is a system of monoidal,  $\Bbbk$ -linear, triangulated categories of motives

 $\mathsf{H}(X, \Bbbk)$ 

for quasi-projective varieties  $X/\overline{\mathbb{F}}_p$ .





## Theorem (E.-K. 2016)

There is a system of monoidal,  $\Bbbk$ -linear, triangulated categories of motives

 $\mathsf{H}(X,\Bbbk)$ 

for quasi-projective varieties  $X/\overline{\mathbb{F}}_p$ . Which has

a full six functor formalism (using Ayoub, Cisinski–Déglise),





## Theorem (E.-K. 2016)

There is a system of monoidal,  $\Bbbk$ -linear, triangulated categories of motives

 $\mathsf{H}(X,\mathbb{k})$ 

for quasi-projective varieties  $X/\overline{\mathbb{F}}_p$ . Which has

- a full six functor formalism (using Ayoub, Cisinski–Déglise),
- a formalism of weights (after Bondarko),





## Theorem (E.-K. 2016)

There is a system of monoidal,  $\Bbbk$ -linear, triangulated categories of motives

 $\mathsf{H}(X,\mathbb{k})$ 

for quasi-projective varieties  $X/\overline{\mathbb{F}}_p$ . Which has

a full six functor formalism (using Ayoub, Cisinski–Déglise),

a formalism of weights (after Bondarko),

and computes higher Chow groups

 $\operatorname{CH}^{n}(X, 2n-i; \Bbbk) \cong \operatorname{Hom}_{\mathsf{H}(X, \Bbbk)}(\mathbb{1}_{X}, \mathbb{1}_{X}(n)[i])$ 

for  $X/\overline{\mathbb{F}}_p$  smooth (using Geisser-Levine).



 $G/\Bbbk$  split reductive group,  $X^{\vee}/\overline{\mathbb{F}}_p$  Langlands dual flag variety.



 $G/\mathbb{k}$  split reductive group,  $X^{\vee}/\overline{\mathbb{F}}_p$  Langlands dual flag variety. Using results of Soergel (2001) and ideas of Soergel–Wendt (2015) we prove:



 $G/\mathbb{k}$  split reductive group,  $X^{\vee}/\overline{\mathbb{F}}_p$  Langlands dual flag variety. Using results of Soergel (2001) and ideas of Soergel–Wendt (2015) we prove:



Derived graded modular category  $\mathcal{O}$  (subquotient of  $\operatorname{Rep}_0^{\mathbb{Z}}(G)$ , defined by Soergel)

 $G/\mathbb{k}$  split reductive group,  $X^{\vee}/\overline{\mathbb{F}}_p$  Langlands dual flag variety. Using results of Soergel (2001) and ideas of Soergel–Wendt (2015) we prove:

$$\mathrm{MTDer}_{(B)}(X^{\vee}/\overline{\mathbb{F}}_p, \Bbbk) \xrightarrow{\sim} \mathrm{Der}^b(\mathcal{O}^{\mathbb{Z}}(G))$$

Stratified mixed Tate motives (full subcategory of  $H(X^{\vee}, \mathbb{k})$ , defined as in Soergel's talk.)

Derived graded modular category  $\mathcal{O}$  (subquotient of  $\operatorname{Rep}_0^{\mathbb{Z}}(G)$ , defined by Soergel) BURG

 $G/\mathbb{k}$  split reductive group,  $X^{\vee}/\overline{\mathbb{F}}_p$  Langlands dual flag variety. Using results of Soergel (2001) and ideas of Soergel–Wendt (2015) we prove:



Stratified mixed Tate motives (full subcategory of  $H(X^{\vee}, \mathbb{k})$ , defined as in Soergel's talk.)

Derived graded modular category  $\mathcal{O}$  (subquotient of  $\operatorname{Rep}_0^{\mathbb{Z}}(G)$ , defined by Soergel)

Shadow of graded Finkelberg-Mirkovic conjecture.