[1] let V/F be a vector space, L, g C V finite subsets such that (1) span(9)=1 (2) 1. linearly independent.
Present an algorithm (in mords or pseudo code) which constructs a
(1) span(g)=L (2) L linearly independent. Present an algorithm (in mords or pseudo code) which constructs a subset $H \subset G$, such that $ G - H = L $ and span $(H \cup L) = V$. Itint: Use the proof of the replacement (le orem).
that: Use the proof of the replacement (le over).
2.] let V/F be a finite dimensional vector space. Let VCV be a subspace
(a) Show that W is finite dimensional
(6) Show that there are B, Ba C V such that
(a) B. of a hasis of W
(5) B, 1B2= & and B= B, UB2 is a basis of V
(c) In the notation of (b), let Ba = {u,, up}, and
denote by [u;]=u;tV @ V/W, their cosets in V/W.
(5) \$1,0\$a=\$ and \$=\$,0\$2 is a basis of V (c) In the notation of (b), let \$a= Su, ,, up3, and choose by [u:]=u:tV \in V/\lambda, fleir cosets in V/\lambda. Show that \$\int \int \int \int \int \int \int \int
3.1 let T: V-DW de a homomorphism of vector spaces over F. Showthe
(a) im (T) < V and ker (T) < V are subspaces
Cb) let S: W-> U or another homo morphism. Show that
ST: V -> U is also a homonoppism.
(c) Assume that T is surjective, and V=span({u,, un}).
(c) Assume Hat T is surjective, and V=span(\(\int_1,, un\)). Show that W=span(\(\frac{\tangenter}{\tangenter}),,\(\tangenter)\)
4.] Construct 5 unique examples of linear maps.