
Practice Midterm 1

UCLA: Math 115A, Fall 2017

Instructor: Jens Eberhardt
Date: 08 October 2017

• This exam has 4 questions, for a total of 16 points.

• Please print your working and answers neatly.

• Write your solutions in the space provided showing working.
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• Non programmable and non graphing calculators are allowed.
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1. Prove or disprove that the following subsets W of the R-vector space V = R3 are subspaces.

(a) (2 points)
W =

{
(a, b, c) ∈ R3 | a2 + b2 + c2 = 0

}
(b) (2 points)

W =
{

(a, b, c) ∈ R3 | a+ b+ c = 0
}

Solution:

(a) Let a, b, c ∈ R with a2 + b2 + c2 = 0. Since a2, b2, and c2 are all bigger or equal than zero, it
follows that a = b = c = 0. Hence W = {0}, which is clearly a subspace.

(b) Clearly the zero vector (0, 0, 0) is in W . Now let (a, b, c), (a′, b′, c′) ∈W . Then

a+ b+ c = 0 and a′ + b′ + c′ = 0 implies

a+ a′ + b+ b′ + c+ c′ = a+ b+ c+ a′ + b′ + c′ = 0.

So (a, b, c) + (a′, b′, c′) = (a+ a′, b+ b′, c+ c′) ∈W . Let λ ∈ R. Then

a+ b+ c = 0 implies

λa+ λb+ λc = λ(a+ b+ c) = 0.

Hence λ(a, b, c) = (λa, λb, λc) ∈W . We conclude that W is a subspace of V .
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2. (4 points) Let S = {(1,−1, 0), (0, 1,−1), (1, 1, 1)} ⊆ R3. Prove or disprove that S is a basis of R3

Solution: Since the dimension of R3 is 3 and S has exactly 3 elements, it suffices to prove or
disprove that S is linearly independent. Let a, b, c ∈ R such that

a(1,−1, 0) + b(0, 1,−1) + c(1, 1, 1) = (a+ c,−a+ b+ c,−b+ c) = (0, 0, 0).

This amounts to the following system of linear equations:

a+ c = 0

−a+ b+ c = 0

−b+ c = 0

Add (I) to (II):

a+ c = 0

b+ 2c = 0

−b+ c = 0

Add (II) to (III):

a+ c = 0

b+ 2c = 0

3c = 0

So c = 0 and also a, b = 0. Hence S is linearly independent and a basis of R3.
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3. Let W1,W2 be subspaces of a vector space V over a field F . Prove or disprove that the following subsets
are also subspaces of V .

(a) (2 points) The intersection of W1 and W2

W1 ∩W2 = {v ∈ V | v ∈W1 and v ∈W2}.

.

(b) (2 points) The difference of W1 and W2

W1\W2 = {v ∈ V | v ∈W1 and v is not an element of W2}.

.

Solution:

(a) Since W1 and W2 are subspaces of V we have 0 ∈W1 and 0 ∈W2. Hence 0 ∈W1 ∩W2.
Let x, y ∈W1∩W2. Then x, y ∈W1 and x, y ∈W2. Since W1 and W2 are subspaces, x+y ∈W1

and x+ y ∈W2. Hence x+ y ∈W1 ∩W2.
Now let λ ∈ F . Since W1 and W2 are subspaces, λx ∈W1 and λx ∈W2. Hence λx ∈W1 ∩W2.
We conclude that W1 ∩W2 is a subspace of V .

(b) Since W2 is a subspace of V , we have 0 ∈ W2. Hence 0 is not in W1\W2, which is hence not a
subspace.
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4. Let V be a vector space over a field F and let x, y, z ∈ V . Prove the each of following statements or
disprove them providing a counterexample.

(a) (2 points) Assume that

z ∈ Span(x, y) and

x ∈ Span(y, z).

Then also y ∈ Span(x, z).

(b) (2 points) Assume that

x 6= 0 and

x ∈ Span(y).

Then also y ∈ Span(x).

Solution:

(a) We provide a counterexample. Let F = R, V = R2 and x, z = (0, 0) and y = (1, 1). Then
z ∈ Span(x, y) and x ∈ Span(y, z) since

0x+ 0y = (0, 0, 0) = z and

0y + 0z = (0, 0, 0) = x.

But y is not in Span(x, y) = {0}.

(b) We prove the statement. Since x ∈ Span(y), there is a λ ∈ F such that

x = λy.

Since x 6= 0 clearly also λ 6= 0. Hence
y = λ−1x

and y ∈ Span(x).
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