Practice Midterm 1 UCLA: Math 115A, Fall 2017

Instructor: Jens Eberhardt Date: 08 October 2017

- This exam has 4 questions, for a total of 16 points.
- Please print your working and answers neatly.
- Write your solutions in the space provided showing working.
- Indicate your final answer clearly.
- You may write on the reverse of a page or on the blank pages found at the back of the booklet however these will not be graded unless very clearly indicated.
- Non programmable and non graphing calculators are allowed.

Name: _____

ID number:

Question	Points	Score
1	4	
2	4	
3	4	
4	4	
Total:	16	

1. Prove or disprove that the following subsets W of the \mathbb{R} -vector space $V = \mathbb{R}^3$ are subspaces.

(a) (2 points)

(b) (2 points)

$$W = \left\{ (a, b, c) \in \mathbb{R}^3 \, | \, a^2 + b^2 + c^2 = 0 \right\}$$

$$W = \{(a, b, c) \in \mathbb{R}^3 \,|\, a + b + c = 0\}$$

Solution:

(a) Let $a, b, c \in \mathbb{R}$ with $a^2 + b^2 + c^2 = 0$. Since a^2, b^2 , and c^2 are all bigger or equal than zero, it follows that a = b = c = 0. Hence $W = \{0\}$, which is clearly a subspace.

(b) Clearly the zero vector (0,0,0) is in W. Now let $(a,b,c), (a',b',c') \in W$. Then

a + b + c = 0 and a' + b' + c' = 0 implies a + a' + b + b' + c + c' = a + b + c + a' + b' + c' = 0.

So $(a, b, c) + (a', b', c') = (a + a', b + b', c + c') \in W$. Let $\lambda \in \mathbb{R}$. Then

 λa

$$a + b + c = 0$$
 implies
 $+ \lambda b + \lambda c = \lambda (a + b + c) = 0.$

Hence $\lambda(a, b, c) = (\lambda a, \lambda b, \lambda c) \in W$. We conclude that W is a subspace of V.

2. (4 points) Let $S = \{(1, -1, 0), (0, 1, -1), (1, 1, 1)\} \subseteq \mathbb{R}^3$. Prove or disprove that S is a basis of \mathbb{R}^3

Solution: Since the dimension of \mathbb{R}^3 is 3 and S has exactly 3 elements, it suffices to prove or disprove that S is linearly independent. Let $a, b, c \in \mathbb{R}$ such that

a(1, -1, 0) + b(0, 1, -1) + c(1, 1, 1) = (a + c, -a + b + c, -b + c) = (0, 0, 0).

This amounts to the following system of linear equations:

```
\begin{aligned} a+c &= 0\\ -a+b+c &= 0\\ -b+c &= 0 \end{aligned}
```

Add (I) to (II):

$$a + c = 0$$
$$b + 2c = 0$$
$$-b + c = 0$$

Add (II) to (III):

```
a + c = 0b + 2c = 03c = 0
```

So c = 0 and also a, b = 0. Hence S is linearly independent and a basis of \mathbb{R}^3 .

- 3. Let W_1, W_2 be subspaces of a vector space V over a field F. Prove or disprove that the following subsets are also subspaces of V.
 - (a) (2 points) The intersection of W_1 and W_2

$$W_1 \cap W_2 = \{ v \in V \mid v \in W_1 \text{ and } v \in W_2 \}.$$

(b) (2 points) The difference of W_1 and W_2

 $W_1 \setminus W_2 = \{ v \in V \mid v \in W_1 \text{ and } v \text{ is not an element of } W_2 \}.$

Solution:

- (a) Since W_1 and W_2 are subspaces of V we have $0 \in W_1$ and $0 \in W_2$. Hence $0 \in W_1 \cap W_2$. Let $x, y \in W_1 \cap W_2$. Then $x, y \in W_1$ and $x, y \in W_2$. Since W_1 and W_2 are subspaces, $x+y \in W_1$ and $x+y \in W_2$. Hence $x+y \in W_1 \cap W_2$. Now let $\lambda \in F$. Since W_1 and W_2 are subspaces, $\lambda x \in W_1$ and $\lambda x \in W_2$. Hence $\lambda x \in W_1 \cap W_2$. We conclude that $W_1 \cap W_2$ is a subspace of V.
- (b) Since W_2 is a subspace of V, we have $0 \in W_2$. Hence 0 is not in $W_1 \setminus W_2$, which is hence not a subspace.

- 4. Let V be a vector space over a field F and let $x, y, z \in V$. Prove the each of following statements or disprove them providing a counterexample.
 - (a) (2 points) Assume that

$$z \in \text{Span}(x, y)$$
 and
 $x \in \text{Span}(y, z).$

Then also $y \in \text{Span}(x, z)$.

(b) (2 points) Assume that

 $x \neq 0$ and $x \in \operatorname{Span}(y).$

Then also $y \in \text{Span}(x)$.

Solution:

(a) We provide a counterexample. Let $F = \mathbb{R}$, $V = \mathbb{R}^2$ and x, z = (0,0) and y = (1,1). Then $z \in \text{Span}(x, y)$ and $x \in \text{Span}(y, z)$ since

$$0x + 0y = (0, 0, 0) = z$$
 and
 $0y + 0z = (0, 0, 0) = x.$

But y is not in $\text{Span}(x, y) = \{0\}.$

(b) We prove the statement. Since $x \in \text{Span}(y)$, there is a $\lambda \in F$ such that

$$x = \lambda y.$$

Since $x \neq 0$ clearly also $\lambda \neq 0$. Hence

and $y \in \text{Span}(x)$.

$$y = \lambda^{-1}x$$

This page has been left intentionally blank. You may use it as scratch paper. It will not be graded unless indicated very clearly here and next to the relevant question.

This page has been left intentionally blank. You may use it as scratch paper. It will not be graded unless indicated very clearly here and next to the relevant question.