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1. Introduction

In this seminar we want to learn how to interpret different notions of cohomology
of a topological space X as derived functors via the abelian category of sheaves
on X. Many results known from algebraic topology, like the universal coefficient
theorem, the Künneth formula, Poincaré duality and the Leray spectral sequence,
can be generalized to families of topological spaces by Grothendieck’s formalism of
six functors f∗, Rf∗, Rf!, f

!,⊗L, RHom between the derived categories of sheaves
on two spaces X and Y for a sufficiently nice map f : X → Y .

2. Talks

2.1. Introduction: Jordan curve theorem. (22.04., Wolfgang Soergel) The aim
of our first talk is to illustrate some of the methods that we want to learn in this
seminar by a simple example. We choose to prove the well-known Jordan curve
theorem to see sheaf cohomology with compact support, derived functors, distin-
guished triangles and an instance of Verdier duality in action. All these concepts
will be studied in detail in the following talks.
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2.2. Derived categories. (29.04.) Derived categories give the right framework to
define derived functors. Rather than going into technical details this talk is meant
to give some intuition and enable us to properly discuss derived functors in the
subsequent talks.

Motivate derived categories:
– Good framework for derived functors (compare second talk below);
– Explain the ‘Philosophy’: Complexes are good, cohomology is bad, cf.

[9].
Define derived categories via their universal property (please, clearly dis-
tinguish between the definition and the possible construction). Example:
Cohomology factors through the derived category.
Show the construction of the derived category of an abelian category A:

– Shortly introduce the idea of localizing classes of morphisms and Ore
localization to get the unbounded derived category D(A).(Problem
here: Hard to see that the localized category is additive.)

– Focus mainly on the construction of the bounded below derived cat-
egory D+(A) via the bounded below homotopy category K+(I) of
injective objects I. (Only mention that the same construction is pos-
sible with projective objects.)

The derived category fails to be abelian: Motivate the introduction of dis-
tinguished triangles as a replacement for short exact sequences.
Introduce mapping cones and cylinders. Compare this to the corresponding
topological notions (cf. [9]).
Define the family of distinguished triangles in the derived category and
deduce the long exact sequence in cohomology.
Optional: Mention without proof that the derived category is a triangulated
category.

References. Derived category: [4], III.2.-3., [11], 10.1-10.4. Distinguished triangles:
[4], III.3. [11], 1.5, 10.2.

2.3. Derived functors. (06.05., Natalie) A left (not necessarily right) exact addi-
tive functor F : A → B between two abelian categories induces the derived functor
RF : D(A)→ D(B) between their derived categories.

Motivate derived functors:
– RF preserves distinguished triangles and can therefore be seen as an

‘exact version’ of F . Applying cohomology, this yields that a short
exact sequence in A induces a long exact cohomology sequence in B
in terms of the classical derived functors RiF := HiRF .

– Discuss the example of HomZ(−,Z) which fails to be a duality, e.g.
HomZ(Z/2Z,Z) = 0. This is fixed by the derived functor RHomZ(−,Z)
that turns out to be a duality on Db(Z-modfg).

Define RF by the universal property (please, clearly distinguish between
the definition and the possible construction).
Introduce F -acyclic objects. Show that injective (projective) objects are
always F -acyclic.
Show how to construct the derived functor RF by using resolutions with
acyclic objects.
Example: Refer back to RHomZ(Z/2Z,Z).
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Give different definitions of Ext• via: R•Hom and HomD+(A) and if you
still have time showcase Yoneda’s construction. In any case, explain the
ring structure on Ext•(A,A). This interpretation for Ext• explains how
D(A) encodes how far A is from being semi-simple.

References. Derived functors: [4], III.6., [11], 10.5. Different definitions of Ext: [4],
III.5., III.6.14., [11], 3.5.

2.4. Sheaf cohomology. (13.05., Max) We want to interpret cohomology of a
space X as derived functors and express facts about cohomology in terms of rela-
tions among these functors. To talk about derived functors, we need an abelian
category to start with. We take the abelian category Sh(X) of sheaves (of abelian
groups) on X.

Recall that a continuous map f : X → Y induces the pair of adjoint functors
(f∗, f∗) between the categories of sheaves on X and Y . Introduce f! and
only mention that we will also obtain a pair of adjoint functors (Rf!, f

!) in
the derived category in a later talk.
Show how to get the notions of global (compactly supported) sections,
constant and skyscraper sheaf as well as stalk from these functors via the
maps X → {pt} and {pt} → X. Mention that f∗ is exact whereas f∗ and
f! are in general only left exact.
Introduce Rf∗ (Rf!), in particular RΓ(c)(X,−), by mentioning that Sh(X)
has enough injectives (Godement resolution), and define sheaf cohomology
(with compact support). Show the different ways to get the cohomology
(with compact support) of the constant sheaf ZX via: R•Γ(c)(X,ZX) =
R•a∗(!)a

∗(Z) (for a : X → {pt}) and R•Hom(ZX ,ZX) = Ext•(ZX ,ZX)
which naturally yields a ring structure on cohomology.
Mention the underlying presheaf of Rf∗F and the stalks of Rf!F .
Show how the unit F → f∗f

∗F of the adjunction (f∗, f∗) induces a map
H•(Y,F) → H•(X, f∗F). This yields a pullback in cohomology for F =
ZX .

References. General references for sheaf theory: [5], [6], [1]. Sheaf cohomology: [4],
III.8, [6], 2.6.

2.5. de Rham’s theorem. (20.05., Anja, Felix) In certain cases sheaf cohomology
can be compared with singular and de Rham cohomology. This can be done by
constructing sheaf versions of the singular cochain and de Rham complex.

Discuss the different families of sheaves which are acyclic for f∗ (f!): injec-
tive⇒ flabby/flasque⇒ soft⇒ c-soft. Explain to which classes continuous
functions, analytic functions, compactly supported functions etc. belong.
The class of (c-)soft sheaves is acyclic for Γ(X,−), Γc(X,−) for paracom-
pact X. Define the de Rham complex (of sheaves) on a smooth manifold
X. This is a soft resolution of the constant sheaf RX . We immediately
get that H•dR(X,R) = H•(X,RX) and analogously for cohomology with
compact support.
The singular cochain complex (of sheaves) on X also gives a resolution of
the constant sheaf. Use this to prove de Rham’s theorem comparing de
Rham and singular cohomology (and also with compact support).
Discuss that the ring structures on H•(X,RX) and H•dR(X,R) coincide.
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References. Singular cohomology in the sheaf setting: [8], 17.2.10, [1], I.7, III.1. De
Rham: [8], 17.2.11, [1], III.3 (notation is quite heavy here, just forget about the
family of supports and different coefficients).

2.6. Base change. (03.06., Daniel) A cartesian diagram of locally compact spaces

W

g

��

q // Y

f

��
Z

p // X

induces a further relation, called proper base change, between proper direct image
and inverse image. Namely, one has an isomorphism of functors

p∗f! ' g!q
∗.(2.1)

From this equivalence and its derived version one can deduce the projection formula,
the Künneth formula and homotopy invariance of sheaf cohomology.

Prove proper base change (2.1) and deduce its derived version. If you want,
you can mention here that this works in more generality, cf. [7].
Define the tensor product of sheaves and deduce the projection formula
from the base change.
Discuss flat sheaves and the derived version of the projection formula. From
this deduce the Künneth formula.
You can prove homotopy invariance of sheaf cohomology (meaning that
two homotopic maps induce the same map in cohomology (of locally con-
stant sheaves), cf. fourth talk) either directly or by applying the Künneth
formula.

References. Proper base change: [8], 18.3.13, [7], [6], II.5.11, II.6.7. Homotopy
invariance via base change: [8], 18.2.3, [6], II.7. Künneth formula: [5], VII.2, [6]
Exercise II.18.

2.7. Further topics: Distinguished triangles and quiver representations.
(10.06., Helene) In the first half of the talk, we discuss a distinguished triangle
in the derived category D+(Sh(X)) of sheaves on X that is constructed out of
a closed subset i : A ↪→ X and its complement j : U := X\A ↪→ X. This
yields an interesting long exact sequence (Gysin sequence) in compactly supported
cohomology, cf. first talk.
In the second half of the talk we will see how the category of constructible sheaves
on simplicial complex K (with the natural stratification) is related to the category
of representations of a certain quiver associated to K.

Part I: For a locally closed subset h : W ↪→ X define the exceptional direct
image functor h! which is a right adjoint to h! (note that h! = h∗ for W
open and h! = h∗ for W closed).
Introduce the short exact sequence 0→ j!j

∗F → F → i∗i
∗F → 0 and dis-

cuss the induced distinguished triangle in the derived category D+(Sh(X)).

Part II: The simplicial complex K naturally gives rise to a quiver Q(K) :=
(K,⊂). This quiver becomes a topological space via the final topology and
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we get a (continuous) projection map

p : |K| → Q(K).

Define the category Sh∆(|K|) consisting of sheaves on the geometric real-
ization |K| of the simplicial complex K that are constant on simplices.
Show that p∗ : Sh∆(|K|) → Sh(Q(K)) is an equivalence of categories. Fi-
nally discuss that Sh(Q(K)) is equivalent to the category of representations
of Q(K) with additional relations (namely that two paths in Q(K) with the
same start and end point are identified). In particular, we can express
cohomology of such sheaves as Ext-groups of quiver representations.

References. Distinguished triangles: [5], II.6, [8], 18.3.2, resp. [6]. For quiver rep-
resentations ask us or Prof. Soergel.

2.8. Spectral sequences of filtered complexes. (17.06., Yi-Sheng) This talk is
meant to provide the technical prerequisites for the next two talks.

Introduce the spectral sequence of a filtered complex. Try avoiding indices
as much as possible and instead provide many pictures/diagrams. Explain
degeneration of spectral sequences.
Apply this to construct the two natural spectral sequences associated to a
double complex.

References. [2], Ch. 4., [3], 3.5., [4], III.7.1-5/8-9, [10], 8.3.

2.9. Grothendieck spectral sequence. (24.06., Antonio) Many spectral sequences,
as the Čech and Leray spectral sequence, are instances of the Grothendieck spectral
sequence for the composition of two derived functors. This is a spectral sequence
RiG(RjF )⇒ Ri+j(G ◦ F ) deduced from the equality R(G ◦ F ) = RG ◦RF in the
derived category.

Introduce the Cartan-Eilenberg resolution and apply it to obtain the Gro-
thendieck spectral sequence.
Explain how hypercohomology fits into this framework and mention the
hypercohomology spectral sequence.
Recall Čech cohomology of a sheaf F with respect to a covering U of X.
Introduce the Čech spectral sequence Ȟp(U ,Hq(F)) ⇒ Hp+q(X,F). You
can either do this directly using a spectral sequence of a double complex
or via the Grothendieck spectral sequence associated to the composition of
the functors

Sh(X)
ι // PSh(X)

Ȟ0
U // Ab .

Mention that if U is F-acyclic, then the spectral sequence degenerates on
the second page.
Introduce the Hom - and Ext -sheaves. Deduce the local-to-global spectral
sequence which relates the cohomology of the Ext -sheaves with the Ext-
groups.

References. Grothendieck and hypercohomology: [4], III.7.7-15 Čech cohomology:
[4], III.8.2., II.8. Local-to-global: [3], p.706
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2.10. Frölicher and Leray spectral sequence. (01.07., Martin) The Frölicher
spectral sequence for a compact Kähler manifolds X gives a relation between the
sheaf cohomology groups Hp(X,ΩqX) of the sheaves ΩqX of holomorphic differential
forms on X and the Hodge filtration on Hp+q(X,C).

Given a complex manifold X, define the sheaf ΩpX of holomorphic p-forms
on X and introduce the Dolbeault resolution ΩpX → Ωp,•X .
Outline the Hodge filtration and construct the Frölicher spectral sequence.
Finally, outline why the Frölicher spectral sequence degenerates at E2 for
a compact Kähler manifold X.

Another example of a Grothendieck spectral sequence is the Leray spectral sequence
for a map f : X → Y which enables one to compute the cohomology of a sheaf F
on X by the cohomology of the higher direct image sheaves Rjf∗F .

Given two maps f : X → Y , g : Y → Z recall that f∗ preserves injectives,
hence R(g◦f)∗ = Rg∗◦Rf∗. Now apply the Grothendieck spectral sequence
to get Rig∗R

jf∗F ⇒ Ri+j(g ◦ f)∗F . The special case Z = {pt} is called
Leray spectral sequence.
Apply the Leray spectral sequence to the following setup: Let f : X → Y
be a holomorphic submersion between two compact Kähler manifolds X,
Y and F = CX . Then the Leray spectral sequence degenerates at E2.
Only show how relative hard Lefschetz implies that the differential on the
E2-page vanishes.

References. Frölicher: [10], 8.3.3. Leray: [3], p.462ff., [4], III.8. Example for Leray:
[3], p.466ff., [12].

2.11. Verdier Duality I. (08.07., Florian, Jens) To a smooth manifold one can
associate singular cohomology groups (with compact support), singular homology
and Borel-Moore-homology. Cohomology and homology in the same degree are
related by algebraic duality (universal coefficient theorem) and in complementary
degree by Poincaré. All of these dualities can be understood as an instance of
Verdier duality which in turn just states that there is a right adjoint functor f ! to
Rf!. This is the aim of the last talks.

2.12. Verdier Duality II. (15.07., Florian, Jens)

2.13. Six functor formalism. (22.07., Fritz)
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